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How to Write a Proof

* Synthesizing definitions, intuitions,
and conventions.

Today’s Lecture
Proofs on Numbers

o
Olltlllle * Working with odd and even numbers.

Universal and Existential Statements

* Two important classes of statements.

Variable Ownership
* Who owns what?



To kick things off:

What is a proot?



Proof as Dialog

A mathematical proof is a dialog between two
parties: a proof writer and a proof reader.

 The proof writer knows a mathematical fact.
 The proof reader is honest but skeptical.

 The proof writer’s job is to take the reader on a
journey from ignorance to understanding.

& &

Proof Writer (You) Proof Reader
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Conventions

What is the standard
format for writing a proof?
What are the techniques
for doing so?



Writing our First Proof



Theorem: If n is an even integer,
then n“ is even.
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Theorem: If n is an even integer,
then n“ is even.



Theorem: If n is an even integer,
then n? 1s even.



An integer n is called even if
there is an integer k where n = 2Kk.



Theorem: If n is an even integer,
then n“ is even.



2 What does this
2 theorem mean?
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Let’s Try Some Examples!

Theorem: If n is an even integer, then n? is even.



[L.et’s Draw Some Pictures!
n

Theorem: If n is an even integer, then n? is even.
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Theorem: If n is an even integer, then n? is even.



Let’'s Draw Some Pictures!
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n: = 2(2k?)

Theorem: If n is an even integer, then n? is even.



Conventions

What is the standard
format for writing a proof?
What are the techniques
for doing so?



Our First Proof!

Theorem: If n is an even integer, then n? is even.



Our First Proof!

Theorem: If n is an even integer, then n? is even.
Proof:



Our First Proof!
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Proof: Assume n is an even integer.
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Our First Proof!

Theorem: If n is an even integer, then n? is even.

Proof: Assume n is an even integer. We want to
show that n? is even.

Since n is even, there is some integer k such
that n = 2k. This means that

n: = (2Kk)>
= 4k*



Our First Proof!

Theorem: If n is an even integer, then n? is even.

Proof: Assume n is an even integer. We want to
show that n? is even.

Since n is even, there is some integer k such
that n = 2k. This means that

n? = (2k)?
= 4k?
= 2(2k?).



Our First Proof!
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From this, we see that there is an integer m
(namely, 2k?) where n? = 2m.
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Our First Proof!
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Proof: Assume n is an even integer. We want to
show that n? is even.

Since n is even, there is some integer k such
that n = 2k. This means that
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= 4k?2
= 2(2k?).
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(namely, 2k?) where n? = 2m. Therefore, n?
1S even, which is what we wanted to show.



Our First Proof!

Theorem: If n is an even integer, then n? is even.

Proof: Assume n is an even integer. We want to
show that n? is even.

Since n is even, there is some integer k such
that n = 2k. This means that

2 _ 5 This symbol
L _ Elzklg) means ‘end of

= 2(2K2). proot”

From this, we see that there is an integer m
(namely, 2k?) where n? = 2m. Therefore, n? ‘/
1S even, which is what we wanted to show.




Our First Proof!

Assume n 1S an even integer.

To prove a stafement of the
form

“If P is true, then Q is true,”

sTarT by asking the reader To
assume That P is True,




Our First Proof!

We want to
show that n?2 is even.

To prove a stafement of the torm

“If P is true, then Q is true,”

we assume P is True, then need fo show
that Q is true., Here, we've felling the
reader where we’re headed.




Our First Proof!

Since n is even, there is some integer k such
that n = 2k.

We apply the definifion ot an even
infeger, We need 1o use this definifion
to make this proot rigorous.




Our First Proof!

Notice how we use the value of k fhatf
we oblained above, Giving names fo
guantities, allows us To manipulate Them,
This is similar o variables in programs.,

This means that

n: = (2k)
= 4k*>
= 2(2k?).



Our First Proof!

Our ulfimate goal is o prove that n2 is
even, This means thal we need fo find
some m where n?2 =2m, Here, we're
explicifly showing how we can do that,

From this, we see that there is an integer m
(namely, 2k?) where n? = 2m.



Our First Proof!

We want to
show that n?2 is even.

Hey, that's whal we
said we were qoing o
dor We're done,

Theretfore, n?
is even, which is what we wanted to show.



Our First Proof!

Theorem: If n is an even integer, then n? is even.

Proof: Assume n is an even integer. We want to
show that n? is even.

Since n is even, there is some integer k such
that n = 2k. This means that

n? = (2k)>?
= 4k?2
= 2(2k?).
From this, we see that there is an integer m

(namely, 2k?) where n? = 2m. Therefore, n?
1S even, which is what we wanted to show.



Our Next Proof



Theorem: For any integers m and n,
if m and n are odd, then m + n is even.



What terms are
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Theorem: For any integers m and n,
if m and n are odd, then m + n is even.



Theorem: For any integers m and n,
if m and n are odd, then m + n is even.



1 20+

An integer n is called odd if
there is an integer k where n = 2k+1.



Going forward, we’ll assume the following:

1. Every integer is either even or odd.
2. No integer is both even and odd.



Theorem: For any integers m and n,
if m and n are odd, then m + n is even.



2 What does this
2 theorem mean?
- Why, intuitively,

(;‘ should it be true?
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Let’s Try Some Examples!

Theorem: For any integers m and n,
if m and n are odd, then m+n is even.



[L.et’s Draw Some Pictures!

Theorem: For any integers m and n,
if m and n are odd, then m+n is even.



[L.et’s Draw Some Pictures!

Theorem: For any integers m and n,
if m and n are odd, then m+n is even.



Let’s Do Some Math!

2k+1 2r+1

Theorem: For any integers m and n,
if m and n are odd, then m+n is even.



Let’s Do Some Math!

k ::1::r

2k+1 2r+1

(2k+1) + 2r+1) =2k +r+ 1)

Theorem: For any integers m and n,
if m and n are odd, then m+n is even.



Conventions

What is the standard
format for writing a proof?
What are the techniques
for doing so?
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m+n=2k+1+2r+1



Theorem: For any integers m and n, if m and n are odd, then
m + n 1s even.

Proof: Consider any arbitrary integers m and n where m and n are
odd. We need to show that m + n is even.

Since m is odd, we know that there is an integer k where

m =2k + 1. (1)
Similarly, because n is odd there must be some integer r such that
n =2r+ 1. (2)

By adding equations (1) and (2) we learn that
m+n=2k+1+2r+1
=2k + 2r + 2



Theorem: For any integers m and n, if m and n are odd, then
m + n 1s even.

Proof: Consider any arbitrary integers m and n where m and n are
odd. We need to show that m + n is even.

Since m is odd, we know that there is an integer k where

m =2k + 1. (1)
Similarly, because n is odd there must be some integer r such that
n =2r+ 1. (2)

By adding equations (1) and (2) we learn that
m+n=2k+1+2r+1
=2k + 2r+ 2
=2(k+r+1).



Theorem: For any integers m and n, if m and n are odd, then
m + n 1s even.

Proof: Consider any arbitrary integers m and n where m and n are
odd. We need to show that m + n is even.

Since m is odd, we know that there is an integer k where

m =2k + 1. (1)
Similarly, because n is odd there must be some integer r such that
n =2r+ 1. (2)

By adding equations (1) and (2) we learn that
m+n=2k+1+2r+1
=2k + 2r + 2
=2(k +r+ 1). (3)



Theorem: For any integers m and n, if m and n are odd, then
m + n 1s even.

Proof: Consider any arbitrary integers m and n where m and n are
odd. We need to show that m + n is even.

Since m is odd, we know that there is an integer k where

m =2k + 1. (1)
Similarly, because n is odd there must be some integer r such that
n =2r+ 1. (2)

By adding equations (1) and (2) we learn that
m+n=2k+1+2r+1
=2k + 2r + 2
=2(k +r+ 1). (3)

Equation (3) tells us that there is an integer s (namely, kK + r+ 1)
such that m + n = 2s.



Theorem: For any integers m and n, if m and n are odd, then
m + n 1s even.

Proof: Consider any arbitrary integers m and n where m and n are
odd. We need to show that m + n is even.

Since m is odd, we know that there is an integer k where
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Similarly, because n is odd there must be some integer r such that
n =2r+ 1. (2)

By adding equations (1) and (2) we learn that
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such that m + n = 2s. Therefore, we see that m + n is even, as
required.



Theorem: For any integers m and n, if m and n are odd, then
m + n 1s even.

Proof: Consider any arbitrary integers m and n where m and n are
odd. We need to show that m + n is even.

Since m is odd, we know that there is an integer k where

m =2k + 1. (1)
Similarly, because n is odd there must be some integer r such that
n =2r+ 1. (2)

By adding equations (1) and (2) we learn that
m+n=2k+1+2r+1
=2k + 2r + 2
=2(k +r+ 1). (3)

Equation (3) tells us that there is an integer s (namely, k + r + 1)
such that m + n = 2s. Therefore, we see that m + n is even, as
required. W



For any integers m and n

Consider any arbitrary integers m and n

We ask the reader To make an arbifrary

choice, Rather than specitying whal m and

n are, we're signaling o the reader that

They could, in principle, supply any choices
of m and n thal theyd like,

By letting the reader pick m and n
arbifrarily, anything we prove about m and
n will generalize To all possible choices tor

those values.,




Theorem: For any integers m and n, if m and n are odd, then
m + n is even.

Proof: Consider any arbitrary integers m and n where m and n are
odd. We need to show that m + n is even.

sincemist To prove a statement of the form
Similarly, b “If P is true, then Q is true,” that
sfart by asking the reader to assume

By adding .
That P is true.

=2k + 2r + 2

=2(k +r+1). (3)

Equation (3) tells us that there is an integer s (namely, k + r+ 1)
such that m + n = 2s. Therefore, we see that m + n is even, as

required. W



Theorem: For any integers m and n, if m and n are odd, then
m + n 1is even.

Proof: Consider any arbitrary integers m and n where m and n are
odd. We need to show that m + n is even.

Since m i ' '
To prove a statement of the form

Similarly, “If P is true, then Q is true,” ch that

By addind atter assuming P is frue, you need fo
show thal Q is True.

=2(k +r+1). (3)

Equation (3) tells us that there is an integer s (namely, k + r+ 1)
such that m + n = 2s. Therefore, we see that m + n is even, as

required. W



Theorem: For any integers m and n, if m and n are odd, then
m + n 1is even.

Numbering These equalities lets us reter
back fo them later on, making the tlow of
the proot a bit easier To understand,

Proof: Consider any
odd. We need to

Since m is odd, w

m =2k + 1. (1)
Similarly, because n is odd there must be some integer r such that
n =2r+1. (2)

By adding equations (1) and (2) we learn that
m+n=2k+1+2r+1
=2k + 2r + 2
=2(k +r+1). (3)

Equation (3) tells us that there is an integer s (namely, k + r+ 1)
such that m + n = 2s. Therefore, we see that m + n is even, as
required. W



Since m is odd, we know that there is an integer k where
m =2k + 1.

This is a complefe senfence: Proofs are
expected 1o be written in complete
senfences, so youll otten use
punctuafion af the end of formulas,

We recommend using The *mugga mugga’
test — it you read a proof and replace
all the mathematical notation with *mugga
mugga,” whal comes back should be a
valid senfence,




Theorem: For any integers m and n, if m and n are odd, then
m + n 1s even.

Proof: Consider any arbitrary integers m and n where m and n are
odd. We need to show that m + n is even.

Since m is odd, we know that there is an integer k where

m = 2k + 1. (1)
Similarly, because n is odd there must be some integer r such that
n =2r+ 1. (2)

By adding equations (1) and (2) we learn that
m+n=2k+1+2r+1
=2k + 2r + 2
=2(k +r+ 1). (3)

Equation (3) tells us that there is an integer s (namely, k + r + 1)
such that m + n = 2s. Therefore, we see that m + n is even, as
required. W



Some Little Exercises

e Here’s a list of other theorems that are true about odd
and even numbers:

« Theorem: The sum and difference of any two even numbers is
even.

e Theorem: The sum and difference of an odd number and an
even number is odd.

« Theorem: The product of any integer and an even number is
even.

« Theorem: The product of any two odd numbers is odd.

« Going forward, we’ll just take these results for granted.
Feel free to use them in the problem sets.

 If you’d like to practice the techniques from today, try
your hand at proving these results!



Universal and Existential Statements



Theorem: For any odd integer n,
there exist integers r and s where r? - s = n.
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Theorem: For any odd integer n,
there exist integers r and s where r? - s = n.



For any odd integer n

This vesult is True tor every possible
choice ot odd infeger n, I\l work
tor n =1, n =131, n = 103, efc,




there exist integers r and s where r* - s2 = n

We aren’? sauing this is True for
every choice of v and s, Rather,
we're saying That somewhere out

there are choices ot v and s where
This works.




Universal vs. Existential Statements

* A universally-quantified statement is a
statement of the form

For all x, [some-property] holds for x.
« We've seen how to prove these statements.

* An existentially-quantified statement is
a statement of the form

There is an x where [some-property] holds for x.

« How do you prove an existentially-
quantified statement?



Proving an Existential Statement

* Over the course of the quarter, we will
see several different ways to prove an
existentially-quantified statement of the
form

There is an x where [some-property] holds for x.

« Simplest approach: Search far and
wide, find an x that has the right
property, then show why your choice is
correct.



2 What does this
2 theorem mean?
- Why, intuitively,

(;‘ should it be true?
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Let’s Try Some Examples!

1 = 2 _ 2

|
N
N

3

|
N
N

D

|
N
N

7

|
N
N

9

Theorem: For any odd integer n,
there exist integers r and s where r* - s2 = n.



Let’s Try Some Examples!

1 = 12 - 032
3 = 22 - 12
5 = 32 - 2°
7 = 4?2 - 32
9 = 52 - 4°

Theorem: For any odd integer n,
there exist integers r and s where r* - s2 = n.



Let’s Try Some Examples!

1 =2+ 41 = 12 - 0?
3 = 2- +1 = 22- 1
5 = 2+ _ +1 = 32 - 2°?
7 = 2-_ +1 = 42 - 3?
9 = 2-_ +1 = 52 - 42

Theorem: For any odd integer n,
there exist integers r and s where r* - s2 = n.



Let’s Try Some Examples!

1 = 2-0+1 = 12 - 02
3 = 2-1+1 = 22- 1
5 = 2-2+1 = 32 - 22
7 = 2-3+1 = 42 - 3?
9 = 2-4+41 = 52 - 42

Theorem: For any odd integer n,
there exist integers r and s where r* - s2 = n.



Let’s Try Some Examples!

1 = 2:-0+41 = 12 - 0°*
3 = 2-1+1 = 22 - 172
5 = 2:-2+1 = 32 - 27
Fducated Guess: |5 T 1 = 4% - 3°
2k + 1 = (k+1)* - K2 |4_|_1 — 52 _ 42

Theorem: For any odd integer n,
there exist integers r and s where r* - s2 = n.



[L.et’s Draw Some Pictures!

~

+1

Theorem: For any odd integer n,
there exist integers r and s where r* - s2 = n.



[L.et’s Draw Some Pictures!

(k+1)2 - k2 = 2k+1

Theorem: For any odd integer n,
there exist integers r and s where r* - s2 = n.



Conventions

What is the standard
format for writing a proof?
What are the techniques
for doing so?



Theorem: For any odd integer n, there exist integers
r and s where r* - s2 = n.



Theorem: For any odd integer n, there exist integers
r and s where r* - s2 = n.

Proof:



Theorem: For any odd integer n, there exist integers
r and s where r* - s2 = n.

Proof: Let n be an arbitrary odd integer.



Theorem: For any odd integer n, there exist integers
r and s where r* - s2 = n.

Proof: Let n be an arbitrary odd integer. We will show
that there exist integers r and s where r? - s = n.



Theorem: For any odd integer n, there exist integers
r and s where r* - s2 = n.

Proof: Let n be an arbitrary odd integer. We will show
that there exist integers r and s where r? - s = n.

Since n is odd, we know there is an integer k where
n=2k+1.



Theorem: For any odd integer n, there exist integers
r and s where r* - s2 = n.

Proof: Let n be an arbitrary odd integer. We will show
that there exist integers r and s where r? - s = n.

Since n is odd, we know there is an integer k where
n=2k+ 1. Now, let r = k+1 and s = k.



Theorem: For any odd integer n, there exist integers
r and s where r* - s2 = n.

Proof: Let n be an arbitrary odd integer. We will show
that there exist integers r and s where r? - s = n.

Since n is odd, we know there is an integer k where
n=2k + 1. Now, let r= k+1 and s = k. Then we see

that
r--s? = (k+1)?-k?



Theorem: For any odd integer n, there exist integers
r and s where r* - s2 = n.

Proof: Let n be an arbitrary odd integer. We will show
that there exist integers r and s where r? - s = n.

Since n is odd, we know there is an integer k where
n=2k + 1. Now, let r= k+1 and s = k. Then we see

that
r--s? = (k+1)?-k?
k?+ 2k + 1 - k?



Theorem: For any odd integer n, there exist integers
r and s where r* - s2 = n.

Proof: Let n be an arbitrary odd integer. We will show
that there exist integers r and s where r? - s = n.

Since n is odd, we know there is an integer k where
n=2k + 1. Now, let r= k+1 and s = k. Then we see
that

2-s? = (k+1)? -k’
K2 + 2k + 1 - K2
2k + 1



Theorem: For any odd integer n, there exist integers
r and s where r* - s2 = n.

Proof: Let n be an arbitrary odd integer. We will show
that there exist integers r and s where r? - s = n.

Since n is odd, we know there is an integer k where
n=2k + 1. Now, let r= k+1 and s = k. Then we see
that

2-s? = (k+1)? -k’
K2 + 2k + 1 - K2
2k + 1

n.



Theorem: For any odd integer n, there exist integers
r and s where r* - s2 = n.

Proof: Let n be an arbitrary odd integer. We will show
that there exist integers r and s where r? - s = n.

Since n is odd, we know there is an integer k where
n=2k + 1. Now, let r= k+1 and s = k. Then we see
that

2-s? = (k+1)? -k’
= K2+2k+1-k
= 2k +1
= n.

This means that r? - s?2 = n, which is what we needed
to show.



Theorem: For any odd integer n, there exist integers
r and s where r* - s2 = n.

Proof: Let n be an arbitrary odd integer. We will show
that there exist integers r and s where r? - s = n.

Since n is odd, we know there is an integer k where
n=2k + 1. Now, let r= k+1 and s = k. Then we see
that

2-s? = (k+1)? -k’
= K2+2k+1-k
= 2k +1
= n.

This means that r? - s?2 = n, which is what we needed
to show. B



I'heorem: For any odd integer n, there exist integers
r and s where r* - s = n.

Proof: Let n be an arbitrary odd integer. We will show
that there exist integers r and s where r? - s = n.

since 11 We ask fThe veader fo make an arbitrary Jhere
n = 2k| choice, Rather than specifying what n is, [j& see
that we've signaling o the reader that fhey

could, in principle, supply any choice n that

they'd like,

= 2k +1

= 1.

This means that r? - s? = n, which is what we needed
to show. B



Theorem: For any odd integer n, there exist integers
r and s where r’ - s = n.

Proof: Let n be an arbitrary odd integer. We will show
that there exist integers r and s where r? - s2 = n.

Since n is odd, we know tk
n=2k + 1. Now, let r = kj
that

As always, if’s helptul fo
write out what we need |°°

fo demonstrate with the
rest of the prooft.

rr-s? = (k+
k? +
= 2k +1

= N.

This means that r? - s? = n, which is what we needed
to show. B



Theorem: For any odd integer n, there exist integers
r and s where r’ - s = n.

Proof: Let n be an arbitrary odd integer. We will show
that there exist integers r and s where r? - s = n.

Since n is odd, we know there is an integer k where
n =2k + 1. Now, letr =k+1 and s = k. Then we see
that

R (k+1)2| We're Twmq To. prove
an existential
= K+ 2l stafement, The easiest
— 2k + 1 way To do that is fo
jusT give concrete
choices of the objects
being sought out,

= N.

This means that r? - s?2 = n,
to show. B




Theorem: For any odd integer n, there exist integers
r and s where r* - s2 = n.

Proof: Let n be an arbitrary odd integer. We will show
that there exist integers r and s where r? - s = n.

Since n is odd, we know there is an integer k where
n=2k + 1. Now, let r= k+1 and s = k. Then we see
that

2-s? = (k+1)? -k’
= K2+2k+1-k
= 2k +1
= n.

This means that r? - s?2 = n, which is what we needed
to show. B



Check the appendix to this
slide deck for more about
who gets to choose values.



Time-Out for Announcements!



Working in Pairs

« Starting with Problem Set One, you are
allowed to work either individually or in
pairs.

« Each pair should make a single joint submission.
 We have advice about how to work effectively

in pairs up on the course website - check the
“Guide to Partners.”

« Want to work in a pair, but don’t know who to
work with? Fill out this Google form and
we’ll connect you with a partner on Friday.



https://forms.gle/YFE3QuSu1TmToHXw6

Problem Set O

* Problem Set O is due this Friday at 1:00PM.
* (It needs to be completed individually.)

* Need help getting Qt Creator installed?
There’s a Qt Creator help session running
tomorrow, 7PM - 9PM, in CoDa B45.

 We recommend installing Qt Creator by this
evening so that if you run into trouble, you can
stop by this help session.



CS103 ACE

 Reminder: There’s an optional companion course,
CS103 ACE, that runs in parallel with CS103.

« CS103 ACE meets Thursdays 1:30 - 3:20PM and
provides additional practice with the course
material in a small group setting.

* This Thursday’s meeting is an informal, drop-in
office hours session where you can lean more
about the course.

* Interested? Apply online using this link.



https://forms.gle/ayGGXCsXrh1tgaVp9

Outdoor Activities

* You're less than fifty miles from grassy mountains,
redwood forests, Pacific coastline, beautiful wetlands,
and more.

« Want to explore the area to see what it has to offer?
Check out our (unofficial) Outdoor Activities Guide.

https://cs103.stanford.edu/outdoor_activities

« A sampler of what to check out:

Drive to the observatory in the mountains near San Jose and
take in the views.

Visit a beach with an enormous colony of elephant seals.

Walk in redwood forests and pick your own bay leaves.
Grab cheap, high-quality food from unassuming strip malls.


https://cs103.stanford.edu/outdoor_activities

Back to CS103!



Theorem: If n is an integer,
then [7/2] + |"/2] = n.



What terms are

used in this proof? °
What do they

formally mean?



Theorem: If n is an integer,
then [7/2] + |"/2] = n.



Theorem: If n is an integer,
then [7/2] + |/2] = n.




Floors and Ceilings

 The notation [x]| represents the ceiling of x,
the smallest integer greater than or equal to x.

* Intuition: Start at x on the number line, then move
to the right while you’'re not on a tick mark.

e« Whatis [1]? What's [1.2]? What's [-1.2]7?

 The notation | x] represents is the floor of x,
the largest integer less than or equal to x.

 Intuition: Start at x on the number line, then move
to the left while you’'re not on a tick mark.

 What is |1]? What’s [1.2]? What’s [-1.2]?



2 What does this
2 theorem mean?
- Why, intuitively,

(;‘ should it be true?

©
<



Let’s Try Some Examples!

Theorem: If n is an integer, then [%/2] + |"/2] = n.



[L.et’s Draw Some Pictures!

Theorem: If n is an integer, then [%/2] + |"/2] = n.



[L.et’s Draw Some Pictures!

[/2] |%/2]

n=2k+1

Theorem: If n is an integer, then [%/2] + |"/2] = n.



Conventions

What is the standard
format for writing a proof?
What are the techniques
for doing so?



Theorem: If n is an integer, then |"/2] + ["/2] = n.



Theorem: If n is an integer, then |"/2] + ["/2] = n.

Proof: Let n be an integer.



Theorem: If n is an integer, then |"/2] + ["/2] = n.

Proof: Let n be an integer. We will show that [*/z] + [*/2] = n.



Theorem: If n is an integer, then |"/2] + ["/2] = n.

Proof: Let n be an integer. We will show that |*/z] + ["/2] = n. To do so,
we consider two cases:



Theorem: If n is an integer, then |"/2] + ["/2] = n.

Proof: Let n be an integer. We will show that |*/z] + ["/2] = n. To do so,
we consider two cases:

Case 1: n is even.

Case 2: n is odd.



we consider two cases:

Case 1: n is even.

Case 2: n is odd.

This is called a proof by cases (or
proot by exhaustion). We splif
aparf into one or more cases and

confirm that the result is indeed
frue in each ot them.

(Think ot it like an it /else or switch
statement,)




Theorem: If n is an integer, then |"/2] + ["/2] = n.

Proof: Let n be an integer. We will show that |*/z] + ["/2] = n. To do so,
we consider two cases:

Case 1: n is even.

Case 2: n is odd.



Theorem: If n is an integer, then |"/2] + ["/2] = n.

Proof: Let n be an integer. We will show that |*/z] + ["/2] = n. To do so,
we consider two cases:

Case 1: nis even. This means there is an integer k such that n = 2k.

Case 2: n is odd.



Theorem: If n is an integer, then |"/2] + ["/2] = n.

Proof: Let n be an integer. We will show that |*/z] + ["/2] = n. To do so,
we consider two cases:

Case 1: nis even. This means there is an integer k such that n = 2k.
Some algebra then tells us that

EARE

n

2

n

2

Case 2: n is odd.



Theorem: If n is an integer, then |"/2] + ["/2] = n.

Proof: Let n be an integer. We will show that |*/z] + ["/2] = n. To do so,
we consider two cases:

Case 1: nis even. This means there is an integer k such that n = 2k.
Some algebra then tells us that

2k
2
1

n

2

n

2

+

2k
2

[
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+

k]

Case 2: n is odd.



Theorem: If n is an integer, then |"/2] + ["/2] = n.

Proof: Let n be an integer. We will show that |*/z] + ["/2] = n. To do so,
we consider two cases:

Case 1: nis even. This means there is an integer k such that n = 2k.
Some algebra then tells us that

nl,|n| _ '%+%‘
21 |2 2 2
= |k|+[k]
= 2Kk

Case 2: n is odd.



Theorem: If n is an integer, then |"/2] + ["/2] = n.

Proof: Let n be an integer. We will show that |*/z] + ["/2] = n. To do so,
we consider two cases:

Case 1: nis even. This means there is an integer k such that n = 2k.
Some algebra then tells us that

nl,|n| _ %+%‘
21 |2 2 2
= |k|+[k]
= 2Kk
= n.

Case 2: n is odd.



Theorem: If n is an integer, then |"/2] + ["/2] = n.

Proof: Let n be an integer. We will show that |*/z] + ["/2] = n. To do so,
we consider two cases:

Case 1: nis even. This means there is an integer k such that n = 2k.
Some algebra then tells us that

nl,n| _ [2k], %‘
2| |2 2 2
= [k]+| k|
= 2k
= n.
Case 2: n is odd. Then there’s an integer k where n = 2k + 1, and
nl| |n| _ [2k+1 +[2k+1
2| |2 2 2




Theorem: If n is an integer, then |"/2] + ["/2] = n.

Proof: Let n be an integer. We will show that |*/z] + ["/2] = n. To do so,
we consider two cases:

Case 1: nis even. This means there is an integer k such that n = 2k.
Some algebra then tells us that

nl,n| _ [2k],|2k
2112 | 2 2
= |k|+[k]
= 2k
= n.
Case 2: n is odd. Then there’s an integer k where n = 2k + 1, and
n| |n| _ [2k+1] |2k+1
20 12] 2 2
= k+%+k+é—




Theorem: If n is an integer, then |"/2] + ["/2] = n.

Proof: Let n be an integer. We will show that |*/z] + ["/2] = n. To do so,
we consider two cases:

Case 1: nis even. This means there is an integer k such that n = 2k.
Some algebra then tells us that

nl,n| _ [2k],|2k
2112 | 2 2
= |k|+[k]
= 2k
= n.
Case 2: n is odd. Then there’s an integer k where n = 2k + 1, and
n| |n| _ [2k+1] |2k+1
20 12] 2 2
= k+%+k+é—

= (k+1)+k



Theorem: If n is an integer, then |"/2] + ["/2] = n.

Proof: Let n be an integer. We will show that |*/z] + ["/2] = n. To do so,
we consider two cases:

Case 1: nis even. This means there is an integer k such that n = 2k.
Some algebra then tells us that

nl,n| _ [2k], %‘
2| |2 2 2
= |k]+|k]
= 2k
= n.

Case 2: n is odd. Then there’s an integer k where n = 2k + 1, and
n| |n| _[2k+1 +[2k+1
2| |2 2 2

1 1
= k+§+k+E
= (k+1)+k

= 2k+1



Theorem: If n is an integer, then |"/2] + ["/2] = n.

Proof: Let n be an integer. We will show that |*/z] + ["/2] = n. To do so,
we consider two cases:

Case 1: nis even. This means there is an integer k such that n = 2k.
Some algebra then tells us that

nl,n| _ [2k], %‘
2| |2 2 2
= [k]+| k|
= 2k
= n.

Case 2: n is odd. Then there’s an integer k where n = 2k + 1, and
n| |n| _[2k+1 +[2k+1
2| |2 2 2

1 1
= k+§ + k+§
= (k+1)+k
= 2k+1

= n.



Theorem: If n is an integer, then |"/2] + ["/2] = n.

Proof: Let n be an integer. We will show that |*/z] + ["/2] = n. To do so,
we consider two cases:

Case 1: nis even. This means there is an integer k such that n = 2k.
Some algebra then tells us that

nl,n| _ [2k], %‘
2| |2 2 2
= |k]+|k]
= 2k
= n.

Case 2: n is odd. Then there’s an integer k where n = 2k + 1, and
n| |n| _[2k+1 +[2k+1
2| |2 2 2

1 1
= k+§ + k+§
= (k+1)+k
= 2k+1
= n.

In either case, we see that |"/2] + ["/2] = n, as required.



AT the end of a split into cases, if’s
a nice courfesy to explain o the
reader what it was that you
established in each case,

In either case, we see that ["/2] + ["/2] = n



Theorem: If n is an integer, then |"/2] + ["/2] = n.

Proof: Let n be an integer. We will show that |*/z] + ["/2] = n. To do so,
we consider two cases:

Case 1: nis even. This means there is an integer k such that n = 2k.
Some algebra then tells us that

nl,n| _ [2k], %‘
2| |2 2 2
= [k]+| k|
= 2k
= n.

Case 2: n is odd. Then there’s an integer k where n = 2k + 1, and
n| |n| _[2k+1 +[2k+1
2| |2 2 2

1 1
= k+§ + k+§
= (k+1)+k
= 2k+1
= n.

In either case, we see that |"/2] + ["/2] = n, as required. ®



To Recap



Conventions

Writing a good proof requires a blend of
definitions, intuitions, and conventions.



An integer n is even if there
is an integer k where n = 2Kk.
An integer n is odd if there is
an integer k where n = 2k+1.

Definitions tell us what we need to do in a proof.
Many proofs directly reference these definitions.



Let’s Try Some Examples!

Building intuition for results requires creativity
trial, and error. ’



* Prove universal  Write in complete
statements by sentences.
making arbitrary

:  Number sub-
choices.

formulas when

* Prove existential referring to them.
statements by
making concrete
choices.

* Prove “If P, then Q" , Articulate your

by assuming P and start and end
proving Q. points.

e Summarize what
was shown in
proofs by cases.

Mathematical proofs have established conventions
that increase rigor and readability.




Your Action Items

* Read “Guide to € and C,” “Guide to
Proofs,” and “Guide to Partners.”

 There’s a lot of goodies in there.
 Finish and submit Problem Set 0.

 Don’t put this off until the last minute!

* (Optionally) Fill out the Problem Set
Matchmaker form.

 Want us to connect you with someone else?
This is a great way to get started.



Next Time

« Indirect Proofs

« How do you prove something without actually proving
it?

« Mathematical Implications

 What exactly does “if P, then Q” mean?
* Proof by Contrapositive

* A helpful technique for proving implications.
* Proof by Contradiction

* Proving something is true by showing it can't be false.



Appendix: Proofs as Dialogs



Proots as a Dialog

Let n be an arbitrary odd integer.

Since n is an odd integer, there is an integer
k such that n = 2k + 1.

Now, let z = k - 34.
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Let n be an arbitrary odd integer.

Since n is an odd integer, there is an integer
k such that n = 2k + 1.

Now, let z = k - 34.

N\

Proof Writer (You)



Proots as a Dialog

Let n be an arbitrary odd integer.

Since n is an odd integer, there is an integer

k such thatn =2k + 1.

Now, let z = k - 34.

N\

N\

Proof Writer (You) Proof Reader
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Let n be an arbitrary odd integer.

N\

Proof Writer (You) Proof Reader
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Let n be an arbitrary odd integer.

© @
Reader Picks

Proof Writer (You) Proof Reader




Proots as a Dialog

Since n is an odd integer, there is an integer
k such that n = 2k + 1.

© @
Reader Picks

Proof Writer (You) Proof Reader




Proots as a Dialog

Since n is an odd integer, there is an integer
k such that n = 2k + 1.

@ e @
Reader Picks

k = 68

Neither Picks

N\ N\

Proof Writer (You) Proof Reader
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Proots as a Dialog
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Now, let z = k - 34.

n=137

k = 68

z =34

Writer Picks

Proof Writer (You)

Neither Picks

Reader Picks

N\

Proof Reader



Proots as a Dialog

N\

Let n be an arbitrary odd integer.

Since n is an odd integer, there is an integer

k such thatn =2k + 1.

Now, let z = k - 34.

k = 68

Neither Picks

n=137 0
Reader Picks
z =234
Writer Picks /\

Proof Writer (You) Proof Reader



Proots as a Dialog

Let n be an arbitrary odd integer.

Since n is an odd integer, there is an integer
k such that n = 2k + 1.

Now, let z = k - 34.

! Reader Picks !

k = 68

- Neither Picks
/ \ Writer Picks / \

Proof Writer (You) Proof Reader




Each of these variables has a
distinct, assigned value.

Each variable was either picked by
the reader, picked by the writer, or
has a value that can be determined

from other variables.

n=137

Reader Picks

k = 68

Neither Picks
z =234

Writer Picks



Who Owns What?

* The reader chooses and owns a value if you use wording
like this:

Pick a natural number n.

Consider some n € N.

Fix a natural number n.

Let n be a natural number.

 The writer (you) chooses and owns a value if you use
wording like this:

e Letr=n+ 1.
« Pick s = n.
* Neither of you chooses a value if you use wording like this:

« Since n is even, we know there is some k € Z where n = 2k.
« Because n is odd, there must be some integer k where n = 2k + 1.



Proots as a Dialog

Let x be an arbitrary even integer.

Then for any even x, we know that x+1 is odd.

N\

N\

Proof Writer (You) Proof Reader
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N\

Proof Writer (You) Proof Reader



Proots as a Dialog

Let x be an arbitrary even integer.

@ X = 242 @

Reader Picks

N\ N\

Proof Writer (You) Proof Reader




Proots as a Dialog

Then for any even x, we know that x+1 is odd.

@ X = 242 @
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N\ N\

Proof Writer (You) Proof Reader




Proots as a Dialog

Then for any even x, we know that x+1 is odd.

@ X = 242 Q

Reader Picks

N\ N\

Proof Writer (You) Proof Reader




Proots as a Dialog

&
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Proots as a Dialog

N\

Proof Writer (You)

for any even x

X = 242
Reader Picks
—

N—

What does

“for any even 242"

mean?

oof Reader



Proots as a Dialog

Let x be an arbitrary even integer.

Since x is even, we know that x+1 is odd.
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Let x be an arbitrary even integer.

x = 242
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N\

Proof Writer (You) Proof Reader



Proots as a Dialog

Since x is even, we know that x+1 is odd.

x = 242

Reader Picks

N\ N\

Proof Writer (You) Proof Reader




Every variable needs a value.

Avoid talking about “all x” or “every x”
when manipulating something
concrete.

To prove something is true for any
choice of a value for x, let the reader
pick x.



Once you’ve said something like
Let x be an integer.
Consider an arbitrary x € Z.
Pick any x.

Do not say things like the following:

This means that for any x € Z ...
So forall x € Z ...



Proots as a Dialog

Proof Writer (You) Proof Reader




Proots as a Dialog

Pick two integers m and n where m+n is odd.

Let n = 1, which means that m+1 is odd.

N\ N\

Proof Writer (You) Proof Reader
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Pick two integers m and n where m+n is odd.
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Proots as a Dialog

Let n = 1, which means that m+1 is odd.
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Let n = 1, which means that m+1 is odd.
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Proots as a Dialog

@ m = 103
Reader Picks
n =100

/ \ Reader Picks

Proof Writer (You)

f

Hold on! I

Let n = 1, which means that m+1 is odd.

already chose

-

a value for n!

/

7\

Proof Reader



Proots as a Dialog

Letn=1.

Pick any integer m where m+1 is odd.
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Writer Picks
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Pick any integer m where m+1 is odd.
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Proots as a Dialog

Letn=1.

Pick any integer m where m+1 is odd.

@ e @
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Proots as a Dialog

Letn=1.

@ m = 166
Reader Picks

/ \ Writer Picks

Proof Writer (You)

Pick any integer m where m+1 is odd.

Do we even
need n here?

N\

Proof Reader



Proots as a Dialog

N\

Pick any integer m where m+1 is odd.
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Proof Writer (You) Proof Reader



Proots as a Dialog

N\

Pick any integer m where m+1 is odd.

m = 166 @
Reader Picks

Proof Writer (You) Proof Reader



Be mindful of who owns what variable.
Don’t change something you don’t own.

You don’t always need to name things,
especially if they already have a name.
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